Emir Adanur and John McInstosh
ELEC5200 MWF 11:00AM-12:00PM
Dr. Agrawal (G.T.A Manish Kulkarni)
Monday April 20, 2009

(a) What did you learn from this project?

· We learned that in order to accomplish a large task, we need to break it into smaller workable parts.

· By choosing a pipelined design for our project, we became very comfortable with the idea of pipelining. This was very helpful in class, because a large portion of the class focused on pipelining.

· We also learned how to use the Altera software and boards. Quartus gives significantly more insightful feedback during VHDL compilations than Xilinx does. We found several of our coding errors when we moved from Xilinx to Quartus. Xilinx told us that everything looked good, but Quartus was able to give us feedback on things that were syntactically correct, but logically incorrect.

· NOP doesn't need to be a separate instruction, as long as you have an instruction which doesn't drive write enable signals. for example BNE $0,$0,0

(b) What would you do differently next time?

· Start each portion of the project earlier. People say start early, but that is misleading. Spreading the work out within each part is useful, because what may seem super-easy may take more time than you think. So start each part early, in order to avoid late nights.
· We would also try and implement some of the necessary components for dealing with Hazards. For example, a forwarding block, branch prediction, stall, instruction flush, or exception handlers. Not all of them, but maybe a few.
· We were able to protect from these hazards by compiling our code differently, however next time we would run it without adjusting the program, and just see what errors result. The program should respond in a predictable manner.
(c) What is your advice to someone who is going to work on a similar project?

· Go to your G.T.A for help. Manish (our G.T.A.) was extremely helpful when debuging our code. He has already seen most of it, and was able to quicly assist us when we needed help. He's a great T.A., knows his stuff, and is very friendly. If you need help, go to him (if he still G.T.A.'s this course...)

· A solid structured foundation (ISA/design), led to less headaches in the future. So plan carefully. Think of all possible cases.

· In a pipelined datapath, the pipeline registers all need to be clocked. This should be obvious and is the way the data gets pushed through the pipeline. However, in addition to clocking the pipeline registers, clock the write enable for elements within the pipeline registers. At first, our register file was not clocked for writing. This simulated with no problems, but was the source of much confusion on the board. We ran into several cases where a register would be updated both when it was supposed to be and on the next instruction. Clocking the pipes on one clock edge and internal writes on the other clock edge solved this problem.

· 7 segments are low active. So if you want to activate segment you must write a zero to it.

· Start testing your device without the clock, but instead use a pushbutton to act as the clock. This, in addition to displaying the registers and PC on the 7 segments, gives you more feedback on code execution. This allows you to debug your program while in system, and effectively complete PART 5 faster.

· A pipeline datapath is not as bad as some people say. It takes more thought up front, but there are no timing problems at the end.

· Don't completely trust ModelSim, it lacks hardware timing delays in its simulations. Trust your knowledge of your design, it is far more reliable than the simulation.

· Work with a partner. You constantly have two sets of eyes looking over the same code, which usually find different problems. You can also split the workload.

· You can both write to your FPGA as well as read the memory contents. So learn how to do both, and make sure the program you are writing to the board changes. We had an issue where we wrote to our board, but it would never get the new program. It would always program the board with the old program (even when we switched boards). To alleviate that problem, we started a new project and it worked fine.

· You cannot avoid a halt instruction.

· You CAN avoid a nop instruction... for example if you use an instruction that writes to the zero register (be sure the zero register is locked in as value 0), and effectively create an operation that does nothing. Or you can use BNE and the zero registers as inputs, so it never branches but just makes an instruction to fill the space.

· Draw out your datapath, and track each path. It will save you time later.

· Draw out all of your VHDL signal and port names on your datapath diagram. This really helps when debugging, and when forced to restructure your hardware/VHDL.

· You only need SLT, BNE and BEQ to make any loop/condition you want.

Our Program (in the main it calls sets 2 variables, then calls a function to add them):
Addr: HEX: Program:

0 0001 add $1, $zero, $zero
1 0002 add $2, $zero, $zero
2 ---- nop
3 ---- nop
4 ---- nop
5 1103 addi $1, 8
6 1204 addi $2, 7
7 ---- nop
8 ---- nop
9 ---- nop
10 E016 jal 22
11 ---- nop
12 ---- nop
13 ---- nop
14 F000 hlt
15 ---- nop
16 ---- nop
17 ---- nop
18 ---- nop
19 ---- nop
20 ---- nop
21 ---- nop
22 0213 add $3, $1, $2
23 DE00 jr $ra
24 ---- nop
25 ---- nop
26 ---- nop

